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Although it is increasingly accepted that temporal expectation can modulate early perceptual processing, the underlying neural compu-
tations remain unknown. In the present study, we combined a psychophysical paradigm with electrophysiological recordings to inves-
tigate the putative contribution of low-frequency oscillatory activity in mediating the modulation of visual perception by temporal
expectation. Human participants judged the orientation of brief targets (visual Gabor patterns tilted clockwise or counterclockwise)
embedded within temporally regular or irregular streams of noise-patches used as temporal cues. Psychophysical results indicated that
temporal expectation enhanced the contrast sensitivity of visual targets. A diffusion model indicated that rhythmic temporal expectation
modulated the signal-to-noise gain of visual processing. The concurrent electrophysiological data revealed that the phase of delta
oscillations overlying human visual cortex (1– 4 Hz) was predictive of the quality of target processing only in regular streams of events.
Moreover, in the regular condition, the optimum phase of these perception-predictive oscillations occurred in anticipation of the ex-
pected events. Together, these results show a strong correspondence between psychophysical and neurophysiological data, suggesting
that the phase entrainment of low-frequency oscillations to external sensory cues can serve as an important and flexible mechanism for
enhancing sensory processing.

Introduction
In our environment predictable temporal regularities are com-
mon, and relevant events often occur in rhythmic streams. The
idea that we can use these rhythmic temporal predictions to en-
hance perception has been strongly advocated by Jones (1976).
Across several studies, Jones and colleagues have shown that per-
ceptual discrimination of rhythmic auditory stimuli is at its best
when targets coincide with the peak of the carrier rhythm (Klein
and Jones, 1996; Barnes and Jones, 2000; Jones et al., 2002, 2006).

Similarly, there has been increasing evidence that temporal
regularities can be used to improve perceptual processing of
visual events (Correa et al., 2005; Doherty et al., 2005; Rolke
and Hofmann, 2007; Mathewson et al., 2010; Jepma et al.,
2012; Rohenkohl et al., 2012; Vangkilde et al., 2012). In a first
step toward characterizing the mechanisms by which rhyth-
mic temporal expectations modulate perception, we have re-
cently shown that a rhythmic temporal structure of external
events increases the signal-to-noise efficiency for perceptual
discrimination of targets (Rohenkohl et al., 2012).

Accepting the increasing evidence that rhythmic temporal
predictions modulate perception, the next issue becomes how
they influence neural processing. It has been recently proposed
that the phase synchronization of low-frequency oscillatory brain
activity to the temporal pattern of events can optimize cortical
excitability and enhance the processing of stimuli occurring at
predicted moments (Lakatos et al., 2008, 2009; Schroeder and
Lakatos, 2009). However, although this phase entrainment has
been observed in primary sensory areas, its possible contribution
to modulating psychological perceptual processes has not yet
been tested rigorously.

To link entrainment of sensory areas to optimization of per-
ceptual processes, it is necessary to demonstrate a concurrent
increase in psychophysical parameters related to perceptual sen-
sitivity. To date, however, experiments testing entrainment of
slow oscillations have documented improvements in perfor-
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mance using primarily reaction-time measures (Lakatos et al.,
2008, 2009; Stefanics et al., 2010). Improvements in reaction
times may come about for many different reasons, ranging from
enhanced sensory processing to increased motor preparation.
Moreover, previous studies have tended to use paradigms requir-
ing detection of occasional highly salient target stimuli. The low
perceptual demands in these tasks limit their sensitivity for de-
tecting perceptual modulations.

Here, we combined a sensitive psychophysical task with elec-
trophysiological recordings to test whether the phase entrain-
ment of low-frequency oscillations to a carrier rhythm modulates

the contrast gain during visual processing.
We used a similar task as in our previous
behavioral study (Rohenkohl et al., 2012),
where participants judged the orientation
of brief targets embedded within tempo-
rally regular or irregular streams of dis-
tractors used as temporal cues.

Analysis of the psychophysical data rep-
licated our recent finding that rhythmic
temporal expectations enhances the percep-
tual processing of targets (Rohenkohl et al.,
2012). Time–frequency analysis of EEG
recordings showed that temporal expec-
tations led to phase locking of slow os-
cillatory activity in anticipation of
expected events so that the stimulus oc-
curred at the phase with optimal perfor-
mance. Our results support that phase
entrainment of slow oscillations in sen-
sory cortex modulates perceptual pro-
cessing according to environmental
demands.

Materials and Methods
Participants. Sixteen participants (aged 19 –33
years, 8 females, all right-handed) gave in-
formed consent to take part in the experiment.
Visual acuity was normal or corrected to nor-
mal. All experimental methods had ethical ap-
proval from the Central University Research
Ethics Committee of the University of Oxford.

Apparatus. The stimuli were created on
MATLAB v.7.10 (The MathWorks) and pre-
sented using the Psychtoolbox v.3.0 package
for MATLAB (Brainard, 1997). Images were
displayed on a 21 inch CRT (CTX ultra screen)
with a spatial resolution of 1024 by 768 pixels
and a vertical refresh rate of 60 Hz, placed 100
cm in front of the participant. A chin rest was
used to maintain a constant viewing distance
and head position. Responses were collected
via a response box (DirectIN High SpeedBut-
ton, Empirisoft).

Stimuli and task. The task was based on a
previous behavioral study (Rohenkohl et al.,
2012). Each trial consisted of a stream of 140
foveally presented stimuli (14 targets and 126
standards) with a duration of 50 ms each (Fig.
1A). All stimuli were circular patches (diame-
ter: 4 degrees of visual angle). The standards
consisted of Gaussian noise patches, while tar-
gets contained Gabor patches embedded
within the Gaussian noise. The Gabor patches
were tilted at �45 degrees, and their spatial
frequency was fixed at 2 cycles per degree of

visual angle.
The Gaussian noise patches were created by smoothing a pixel-by-

pixel luminance Gaussian noise patch with a two-dimensional Gaussian
smoothing kernel, so that their spatial frequency characteristics closely
matched those of the Gabor patches (Wyart et al., 2012a). Both the
smoothing dimension (0.083 degree of visual angle) and the root-mean-
square contrast of the noise (10%) were fixed across participants and
stimuli. Targets were inserted within the stimulus stream in a pseudoran-
domized order, ensuring a minimum of five and maximum of 14 stan-
dards between each target. Since a large number of targets were presented
with a contrast lower than the threshold, isoluminant circles (pink and
blue) were positioned around the patches to help the participants dis-

Figure 1. Schematic illustration of task structure and behavioral results. A, Each trial consisted of a stream of stimuli foveally
presented either with a fixed (Regular condition) or jittered (Irregular condition) SOA. Intervals surrounding the targets were the
same for the Regular and Irregular condition. Targets were brief (50 ms) visual gratings (Gabors) tilted 45° clockwise or counter-
clockwise, presented at seven contrast levels based on participants threshold. Participants were asked to respond to the orientation
of the target (i.e., left or right) whenever a target was presented. Target presentation was always indicated by a change in the
placeholder color to prevent responses to standard stimuli. B, Psychometric functions (left) describing performance on regular (red
line) and irregular (gray line) conditions as a function of target contrast. Bar plots (insets) show the average fitted values of slope
and threshold in regular and irregular conditions across subjects. Average reaction times for correct responses from the regular and
irregular conditions as a function of target contrast (right). Error bars indicate SEM. C, Diffusion model parameters for regular and
irregular conditions. Bar plots show the average fitted values of the accumulation rate (k), residual timing (tr), and decision bound
(A) across subjects. Error bars indicate SEM.
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criminate between targets and standard stimuli. This procedure also pre-
vented participants from responding to standards, and thereby reduced
the numbers of false alarms.

Temporal expectation was manipulated by varying the regularity of
the stimulus-onset asynchrony (SOA) between successive events in a
trial. In regular trials, SOA was fixed at 400 ms, allowing participants to
use the temporal regularity of the stimulation to reduce the uncertainty
about when stimuli could be presented. In irregular trials, the SOAs were
drawn randomly from 200, 300, 400, 500, and 600 ms. As a result of the
jittering, irregular trials had an arrhythmic beat, preventing focused tem-
poral expectations about stimulus appearance. Importantly, the intervals
preceding and succeeding each target were the same in the regular and
irregular trials (400 ms). This control was introduced to avoid any pos-
sible confound related to foreperiod or masking effects caused by the
proximity of the standards surrounding the target.

Procedures. Each participant underwent a calibration session before
the experiment using an adaptive psychophysical staircase procedure to
estimate the threshold contrast for perceiving the Gabor gratings within
the noise patches. Task difficulty was adjusted for each participant by
titrating the contrast of the Gabor patch for which orientation discrimi-
nation was performed at 75% accuracy. Seven levels of contrast were
chosen for target presentation, based on each subject’s threshold values.
These values ranged from �0.3 to �0.3 (in steps of 0.1) on a logarithmic
scale, with 0 being the measured threshold during the psychophysical
staircase procedure. The calibration was performed on 12 irregular trials.
Therefore, any enhancement in contrast sensitivity could not be ex-
plained merely by learning effects.

After the calibration session, participants performed 50 trials (25 reg-
ular and 25 irregular). Regular and irregular trials were presented in a
randomized order. Participants were instructed to respond to the orien-
tation of each target with their left or right index finger according to the
target orientation. Since the targets were also identified by the color of the
placeholder, participants were prompted to respond to targets even at
contrast levels below their threshold level. The experimental session
lasted �1 h. Each trial contained 14 targets; altogether each participant
was presented with a total of 700 targets (50 at each contrast level within
each of the regular and irregular conditions).

Psychometric and diffusion model fitting. The psychometric data from
each participant and condition were fitted with sigmoidal Weibull func-
tions, each defined by three parameters: a threshold �, a slope �, and
lapse-rate � as implemented in Palamedes toolbox (Prins and Kingdom,
2009). Guess rates were fixed at 0.5 (i.e., at chance level) across subjects
and conditions, and the three parameters were fitted separately for
each subject and condition (regular or irregular). Threshold was
taken as the predicted contrast level (expressed in logarithmic units)
corresponding to an accuracy of 75%. Goodness of fit for each par-
ticipant was tested comparing predicted and observed accuracy
(mean r 2 � 0.88, lowest � 0.70).

The diffusion model predicts that the psychometric function for
accuracy P(x) and the chronometric function for the mean response
time t(x) are functions of stimulus strength x according to the follow-
ing two equations:

P� x� �
1

1 � exp��2AKx�

t� x� �
A

kx
tanh�k A x� � tR,

where k corresponds to the normalized accumulation rate, A to the nor-
malized decision bound, and tR to the residual time constant. Stimulus
strength x relates to signal contrast following a power law whose expo-
nent—which controls the overall slope of both psychometric and chro-
nometric functions as a function of signal contrast—was determined
empirically for each subject by maximum-likelihood estimation and re-
mained fixed across conditions. Goodness of fit for each participant was
tested comparing predicted and observed values (mean r 2 � 0.92, low-
est � 0.86).

EEG recording and preprocessing. The EEG was acquired continuously
from 35 Ag/AgCl electrodes at 1000 Hz referenced to the right mastoid
site (AFZ ground; 300 Hz low-pass filter). The electrodes were posi-
tioned according to the 10-05 International system (AEEGS, 1991) and
recorded using NuAmp amplifiers (Neuroscan, El Paso, TX). Electrode
impedances were kept below 5 k�. The montage included seven midline
sites (Fz, FCz, Cz, CPz, Pz, POz, and OZ) and 14 sites over each hemi-
sphere (FP1/FP2, F1/F2, F3/F4, FC1/FC2, FC3/FC4, C1/C2, C3/C4, CP1/
CP2, CP3/CP4, P1/P2, P3/P4, PO3/PO4, PO7/PO8, and O1/O2). Six
additional electrodes were used as ground and reference sites and for
recording the EOG. EOG electrodes were placed to the side of each eye
(horizontal EOG) and above and below the left eye (vertical EOG), and
bipolar signals were subsequently derived by computing the difference
between these electrodes.

EEG preprocessing was performed using Neuroscan version 4.3 and
SPM8 toolbox for MATLAB. Continuous EEG was re-referenced to the
algebraic average of the right and left mastoids. For the parametric re-
gressions (see below), the data were filtered offline with a 40 Hz low-pass
filter (24 db/octave) and epoched from �500 ms to 800 ms relative to
target onsets. Epochs containing excessive noise or drift (�100 �V at any
electrode) or eye artifacts (blinks or saccades) were rejected. Blinks and
saccades were identified as large deflections (�50 �V) in the horizon-
tal or vertical EOG electrodes, and subsequently checked by visual
inspection. The number of trials rejected for each subject because of
blinks or eye movements was small in both conditions (average across
subjects of 9% of trials, maximum of 19%). Importantly, the number
of trials excluded in each condition did not differ significantly (t(15) �
0.25, p 	 0.80).

Time–frequency analyses were performed on the unfiltered data using
the SPM8 and Fieldtrip toolbox (Oostenveld et al., 2011) for MATLAB.
To avoid edge effects at low frequencies, longer epochs from �2000 ms to
2000 ms relative to target onsets were used. However, epoch rejection was
based on trials from the parametric regressions, thus the same trials were
used for both analyses. Individual frequency bands (delta, 1– 4 Hz; theta,
4 – 8 Hz; alpha, 8 –16 Hz; and beta, 16 –32) were extracted using second-
order dual-pass Butterworth filters, and the phase and power of these
narrow-band signals were calculated using the Hilbert transform (Kayser
et al., 2009; Besle et al., 2011; Ng et al., 2012, 2013). Power was defined as
the squared absolute value, and phase as the phase angle of the Hilbert
signal.

Delta-band statistical analyses. For all time–frequency analyses, delta-
band (1– 4 Hz) measures of power and phase were extracted from single-
trial data using second-order Butterworth filters, and calculated using the
Hilbert transform separately for each of five occipital electrodes (O1/O2/
Oz/PO8/PO7) and averaged (either by normal average or by circular
averaging of phase).

To explore whether delta phase was correlated with perceptual sensi-
tivity, we investigated the correlation between delta phase and contrast
gain in two steps. (1) For each time point and participant, delta phase was
separated into 36 successive but partly overlapping bins (the width of
each bin in radians varied so that each bin contained 30% of all trials).
For each bin corresponding to a particular delta-phase range, the pro-
portion correct as a function of target contrast was calculated, and per-
formance was measured by fitting sigmoidal Weibull functions. In other
words, the analysis used was identical as the one used on behavioral data,
but now separated according to different phases of delta phase. By doing
so, we were able to observe how psychophysical threshold values varied as
a function of delta phase. As in the behavioral data, threshold was taken
as the predicted contrast level (expressed in logarithmic units) corre-
sponding to an accuracy of 75%. The negative signed threshold was used
as a measure of contrast gain, as this value works as an index of a perfor-
mance gain from their estimated threshold. (2) At the group level, data
from all participants were pooled and the circular-linear correlation was
calculated, as implemented in the CircStat toolbox (Berens, 2009).

To investigate whether delta phase was concentrated, in terms of
phase locking, around the phase that corresponded to the best per-
formance (or “best phase”), we first estimated what would be the best
phase for each subject, time, and condition. Because phase is a circu-
lar variable, we performed a linear regression of contrast gain with the
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sine and cosine of delta phase and calculated the corresponding pre-
ferred phase as:

Y � �0 � �1 � sin��� � �2 � cos���

�pref � arctan ��1

�2
�,

where Y is the corresponding contrast gain value for that subject and time
point, � is the delta phase, and �0, �1, and �2 are the estimated coeffi-
cients for the linear regression (Wyart et al., 2012b). After having esti-
mated the values of best phase, we then compared them with the
observed mean phase. First, we calculated the circular distance (the cir-
cular equivalent of a subtraction) of the best phases for each subject with
the observed phases. When similar, these distances would be concen-
trated around zero. We then performed a V test to test whether these
values were significantly concentrated around zero. This test is a modi-
fied version of the Rayleigh test for uniformity, and tests the null hypoth-
esis that the population is uniformly distributed around the circle with
the alternative hypothesis that the population is not uniformly distrib-
uted, but rather has a specified mean angle. We used the test as imple-
mented in the CircStat toolbox (Berens, 2009).

For the fit of the accumulation rate for different delta bins, a two-step
procedure was adopted for each subject. (1) All parameters (decision
bound A, accumulation rate k, residual timing tr, lapse rate and scaling
coefficient) were first estimated using all data points (similar to the be-
havioral data). (2) For each bin, the proportion correct and the mean
reaction time as a function of target contrast were calculated. Then, a fit
was performed for each bin allowing only the accumulation rate k to
vary. This procedure was adopted since this is our main variable of inter-
est, compensating the smaller number of trials used in each bin and
avoiding large fluctuations in the parameter space due to this smaller
number of trials.

To test whether the relationship between delta phase and accumula-
tion rate was different across experimental conditions, a similar linear
regression as previously described was used with the sine and cosine of
delta phase as regressors for each participant (Wyart et al., 2012b). The
peak-to-peak effect size �pref was estimated for each participant and
condition using:

�pref � ��1
2 � �2

2.

At the group level, a paired t test was used to compare the peak-to-peak
effect across conditions.

All cluster-based analyses were performed by calculating permutations
tests where experimental conditions were randomly intermixed within
each subject (Maris and Oostenveld, 2007) and repeated 1000 times. For
power and phase-locking value (PLV) analyses, thresholds were chosen
based on t-values for the number of subjects. For r-values (circular-linear
coefficient) and u-values (from the V test) threshold were chosen as the
99.5th percentile of the permuted data.

EEG amplitude regressions. To evaluate possible differences in the sen-
sitivity of neural response to Target Intensity, we regressed single-trial
EEG signals against target contrast at successive time samples using the
following linear model:

Y � �0 � �1 � x,

where Y is the amplitude of the single-trial EEG amplitude and the fitted
value of �0 is an estimate of EEG amplitude for the target with the lowest
contrast (Wyart et al., 2012b). The fitted parameter of �1 furnishes an
estimate of sensitivity of the broadband EEG signal to stimulus strength
x. Values of �1 close to zero suggest that EEG amplitude in that electrode
and time is not modulated by stimulus strength. On the other hand,
values further from zero indicate that the EEG amplitude is largely de-
pendent of stimulus strength—i.e., positive and negative values indicate
an increase and decrease of the EEG amplitude as a function of target
strength respectively. Stimulus strength x is related to target contrast (c)
and in the simplest model, EEG scales linearly to target strength so that
stimulus strength x � c 1. Importantly, we did not restrict the relation

between target contrast (c) and EEG amplitude to be necessarily linear (in
fact, as can been seen in Fig. 4, this is clearly not the case). We considered
a more general model, in which target strength and EEG amplitude fol-
lowed a power function x � c �. The coefficient � was determined empir-
ically for each subject, electrode and time point; but remained fixed
across conditions. Therefore, while it could assume different values for
subjects and time-samples, it was restricted to assume the same value
between regular and irregular conditions at each fit. By doing so, it is
assumed that while target strength and EEG amplitude should be
condition-invariant, the sensitivity of EEG amplitude to target strength
can be modulated by task condition. Also, � was bounded to assume
values between 1 and 4. It is worth emphasizing that situations where �
would assume values above/below the bounds were likely to be condi-
tions where �1 tended to 0.

Our single-trial regression-based analyses were conducted indepen-
dently for each participant, electrode, condition and time point (Wyart et
al., 2012b). To avoid large intersubject differences in parameters esti-
mates due to EEG amplitude intersubject variability, EEG amplitudes
were normalized (using z-score) before each fit. Fits were performed by
nonlinear least-squares regressions, as implemented in lsqcurvefit in
MATLAB.

Results
Signal enhancement and reaction times
Figure 1B, left, shows the mean psychometric functions (propor-
tion correct as a function of target contrast) in regular and irreg-
ular conditions. Fitted threshold and slope values for each
participant were submitted to paired t tests (all t tests used in our
analyses were two-sided). Thresholds were significantly lower for the
regular condition (regular � �0.0014 � 0.017; irregular � 0.019 �
0.015; t(15) � 2.17, p 
 0.05), while there was no difference between
slopes values (regular � 6.99 � 1.28; irregular � 7.05 � 0.83; t(15) �
0.04, p 	 0.5). These findings suggest that participants needed less
contrast to perform the task when stimuli were presented in a regular
rhythmic stream, showing an effect of contrast gain by temporal
expectations.

Reaction times (RTs) for correct responses from the two con-
ditions (Fig. 1B, right) were submitted to a repeated-measures
ANOVA with Temporal Expectation (regular and irregular) and
Target Contrast (seven levels) as factors. We found a significant
main effect of Target Contrast (F(6,90) � 29.9; p 
 0.001), with
shorter RTs for targets with a higher contrast. There was also a
significant main effect of Temporal Expectation (F(1,15) � 6.44;
p 
 0.05), showing shorter RTs for targets in the regular condi-
tion. The interaction between the factors was not significant
(F(6,90) � 1.42; p 	 0.2). This finding rules out the possibility that
the observed increase in perceptual accuracy in the regular con-
dition could have been due to a speed–accuracy trade-off—i.e., to
delayed response times in the regular condition. The simultaneous
improvement in the speed and accuracy of perceptual decisions in
the regular condition replicates our previous observations
(Rohenkohl et al., 2012) and is fully consistent with an increase in
signal contrast under regular stimulation.

Diffusion model
As in our recent study (Rohenkohl et al., 2012), we used a diffu-
sion model to determine which component of information pro-
cessing was responsible for the concurrent increase in target
discriminability and reaction speed observed between regular
and irregular conditions. For each subject, we fitted simultane-
ously the psychometric (relationship between target contrast and
discriminability) and chronometric (relationship between target
contrast and reaction times) functions using a diffusion model of
the decision process as proposed by Palmer and Shadlen (Palmer
et al., 2005). The model consisted of three free parameters that we
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fitted to individual subject data: the accumulation rate k, the
decision bias A, and the residual time constant tR. In this frame-
work, simple perceptual decisions are based on gradual accumu-
lation of noisy sensory evidence at an accumulation rate k until a
signed decision bound �A is reached. Reaction times correspond
to the decision time required to reach either of the decision
bounds. A residual time constant tR accounts for other non-
decision processes such sensory and motor encoding latencies.

We fitted, for each participant, the regular and irregular con-
ditions simultaneously with the three parameters of interest free
to vary between conditions (Fig. 1C). At the group level, param-
eters from all participants were subjected to paired t tests. The
results indicated that the accumulation rate k was significantly
higher in regular than in irregular conditions (regular � 9.41 �
1.02; irregular � 7.81 � 0.51; t(15) � 2.2, p 
 0.05). There was no
significant difference between the decision bound A (regular �
0.35 � 0.04; irregular � 0.39 � 0.03; t(15) � 1.67, p 	 0.11) or the
residual time constant tR (regular � 0.42 � 0.22; irregular �
0.41 � 0.20; t(15) � 1.09, p 	 0.2).

Modulation of contrast gain by entrainment of slow
EEG oscillations
Delta phase and power (1– 4 Hz) were extracted from single-trial
data using second-order Butterworth filters, and calculated using
the Hilbert transform. We used a cluster-based analysis (Maris
and Oostenveld, 2007) to compare anticipatory phase concentra-
tion (indexed by the PLV) across experimental conditions. As can
be seen in Figure 2, in the period between �400 ms and target
presentation, phase concentration was significantly higher across
trials in regular condition (cluster p 
 0.01). Delta power was
widely distributed across electrode sites in both conditions, and
there was no significant difference between conditions (cluster
p 	 0.3).

Given the difference in phase distribution across experimental
conditions, we explored the relationship between delta phase and
perceptual contrast gain. Occipital delta phase (O1/Oz/O2/PO7/
PO8) was separated into 36 successive and partly overlapping
bins (each with 30% of the data). For each bin, the proportion
correct as a function of target contrast was calculated, and per-
formance was measured by fitting sigmoidal Weibull functions.
As in the behavioral data, threshold was taken as the predicted
contrast level (expressed in logarithmic units) corresponding to
an accuracy of 75%. Importantly, a reduction in threshold corre-
sponds to a measure of contrast gain. Intuitively, this value works
as an index of a performance gain from their estimated threshold.

As can be seen in Figure 3A, contrast gain was highly depen-
dent on delta phase in the last hundreds of milliseconds preced-
ing target onset. The statistical comparison between regular and
irregular conditions showed a significantly higher correlation be-
tween delta phase and contrast gain in the regular condition for
the period between 140 and 30 ms before target presentation
(cluster p 
 0.01). Figure 3B shows how contrast gain and RTs
varied as function of the distance from mean phase in this pre-
target period (�140 to �30 ms). In regular conditions, contrast
gain decreased as distance from mean phase increased (peak-to-
trough t(15) � 3.39, p 
 0.01), while no significant effect was
found in the irregular condition (peak-to-trough t(15) � 0.55, p 	
0.5). For RTs, we first regressed RT with signal contrast and then
observed if the residual response time varied as the distance from
mean phase increased. We observed that in regular conditions
RTs increased as the distance from mean phase increased (peak-
to-trough t(15) � �2.20, p 
 0.05), and, as for contrast gain, no

clear phase modulation pattern was observed in the irregular
condition (peak-to-trough t(15) � �0.88, p 	 0.3).

We then investigated whether delta phase was concentrated,
in terms of phase locking, around the delta phase that corre-
sponded to the best performance (or best phase). We first esti-
mated what would be the best phase for performance for each
subject and condition (see Materials and Methods for more
details). Afterward, we compared trial-averaged delta phases
to the best phase estimated. As can be seen in Figure 3C, delta
phase was highly concentrated around the optimum phase
in the regular condition. Comparison between conditions
showed higher concentration around the best phase in the
regular condition for the period between 165 ms and 10 ms
before target onset (cluster p 
 0.01).

Modulation of accumulation rate by delta
Given the strong relationship between delta phase and contrast
gain, we explored whether parameters of the diffusion model
would also be related to these low-frequency oscillations. We
focused our analyses on the 50 ms time window in which contrast
gain and delta phase had the highest correlation (80 –30 ms be-
fore target onset). An analysis similar to the one used on contrast
gain was performed, with occipital delta phase binned into 36

Figure 2. Delta-phase entrainment on occipital sites. A, Binned occipital (O1/Oz/O2/PO7/
PO8) delta phase (1– 4 Hz) for 200 successive trials in a representative participant (top, color
maps). Bottom shows the PLV for regular and irregular conditions for that participant. B, To-
pography of grand average delta PLV (1– 4 Hz) for the period between last cue and target
presentation (�400 ms to 0) in regular (left) and irregular (middle). Topography of the differ-
ence in PLV between conditions (right).
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successive and partly overlapping segments. However, instead of
calculating the threshold for each bin, we estimated the accumu-
lation rate k. Similar to the contrast– gain effect, the modulation
of accumulation rate by delta phase was stronger for regular than
irregular conditions (peak-to-trough difference in percentage
for regular: 12.87 � 1.77; irregular: 9.34 � 1.41; t(15) � 2.22, p 

0.05). Finally, to test whether the best phase for contrast gain was
similar to the best phase for the accumulation rate, we performed
a V test on the difference between best phase for contrast gain and
for accumulation rate. We found that this difference was phase-

locked to zero across participants (V �
23.29, p 
 0.01), suggesting that both ef-
fects depended on similar mechanisms.

Statistical analyses of other
frequency bands
Similarly to delta PLV, we performed
cluster-based analyses on occipital sites
(O1/O2/Oz/PO8/PO7) comparing PLV
and power between regular and irregular
conditions for different frequency bands
(delta, 1– 4 Hz; theta, 4 – 8 Hz; alpha, 8 –16
Hz; and beta, 16 –32). All analyses used
the time period between �400 ms and 400
ms relative to target onset. We found no
significant differences in power between
conditions for delta (cluster p value 	
0.3), theta (cluster p value 	 0.9), alpha
(cluster p value 	 0.35), or beta (cluster p
value 	 0.2). For PLV values, we found no
significant differences between conditions
for alpha (cluster p value 	 0.61) or beta
(cluster p value 	 0.8). There was a higher
theta PLV in regular trials for the period
between 330 ms and 50 ms before target
onset (p 
 0.01). Given this PLV differ-
ence, we performed a similar analysis as
for delta phase investigating a possible re-
lationship between theta phase and con-
trast gain. However, we found no
significant difference between the correla-
tion of theta phase and contrast gain
across experimental conditions (cluster
p 	 0.8), raising the possibility that the
effect of theta PLV might be due to spec-
tral “bleeding” from the delta band.

Modulation of early broadband EEG
signal by target contrast
Figure 4A shows the ERPs elicited by differ-
ent levels of target contrast. In our experi-
mental setup there were several targets
sequentially presented, resulting in an over-
lap of ERPs evoked by targets and standards.
Therefore, to isolate potentials evoked by
the targets, we subtracted the ERP from the
lowest contrast (�0.3 in log scale) from the
other contrasts (from �0.2 to 0.3). To in-
crease signal-to-noise, we then averaged
over each pair of increasing contrasts levels
to calculate the ERPs to low contrast (�0.2
and �0.1), medium contrast (0 and 0.1)
and high contrast (0.2 and 0.3). Because the

contrast level of the preceding and succeeding items was constant,
this procedure resulted in the subtracting out of ERPs from the ad-
jacent stimuli, and highlighted the aspects of the ERP related to sys-
tematic changes in target contrast only. As can be seen in the figure,
the earliest contrast-related modulation, isolating visual sensitivity
to contrast levels, occurred between 200 and 300 ms after target
presentation. Moreover, there was a late modulation over a P300-
like late positive potential, probably reflecting non-sensory processes
occurring simultaneously with motor selection and execution
(O’Connell et al., 2012).

Figure 3. Delta phase predicts contrast gain in Regular conditions. A, Color maps show the relationship between delta phase
and contrast gain in regular (top) and irregular (bottom) conditions. Black line superimposed onto color maps indicates the mean
delta phase across participants. Notice how the mean phase in regular conditions is closely superimposed to what is the optimal
phase for performance. Lower line plot shows the correlation between delta phase and contrast gain in time. Black line indicates
where correlation between delta phase and contrast gain was higher in regular than in irregular conditions (cluster p 
 0.05).
Shaded error bars indicate confidence intervals (5–95%) estimated by a jackknife procedure (removing one subject per time). B,
Left, Line plots show contrast gain as a function of the distance from mean phase in the pretarget period (140 –30 ms). In regular
conditions, contrast gain decreases as distance from mean phase increases (peak-to-trough t(15) � 3.39, p 
 0.01). No clear
pattern is observed in irregular conditions (peak-to-trough t(15) � 0.55, p 	 0.5). Right, Line plots show residual response times
as a function of the distance from mean phase in the same pretarget period (140 –30 ms). In regular conditions, response times
increases as distance from mean phase increases (peak-to-trough t(15) � �2.20, p 
 0.05). No clear pattern is observed in
irregular conditions (peak-to-trough t(15) ��0.88, p	0.3). C, Line plots shows the concentration of delta phase around the best
phase for performance (V test, see main text) in regular and irregular conditions. Black line indicates where concentration around
best phase was significantly higher in regular conditions (cluster p 
 0.05). Shaded error bars indicate confidence intervals
(5–95%) estimated by a jackknife procedure (removing one subject per time). Circular plot indicates the distribution of delta phase
around the best phase (0°) in the pretarget period (140 –30 ms). The size of the arrows indicates the phase locking factor of the
distribution. Dashed inset lines indicates PLV values of 0.2 and 0.4.
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As previously explained, to investigate the differences in the
sensitivity of neural response to Target Intensity, we regressed
single-trial EEG signals against target contrast. The fitted param-
eter of �1 furnishes an estimate of sensitivity of the broadband
EEG signal to stimulus strength x. The model fitting was con-
ducted independently for each participant and condition. At the
group level, we used standard parametric tests (t tests) to assess
the reliability of our effects across the subjects. Figure 4 shows the
magnitude of EEG signal sensitivity (�1 parameters) in occipital
(PO7/PO8) sites averaged across subjects and conditions. As can
be seen in the figure, EEG amplitude was modulated by stimulus
strength in an early period (200 –300 ms after target presenta-
tion). Importantly, a direct comparison between conditions in
this time period indicated that EEG amplitude was more sensitive
to target contrast in the regular than in the irregular condition
(t(15) � 2.16, p 
 0.05).

Discussion
In the present study, we investigated how rhythmic temporal
expectation modulates brain oscillations and perceptual process-
ing. We found that temporal rhythms increase phase entrain-
ment of oscillatory activity at electrodes overlying human visual
cortex. Importantly, this entrainment was closely related to a
concurrent enhancement of perceptual discrimination to rele-
vant events. Our results show a strong correspondence between

neurophysiological and psychophysical data, providing new
compelling supportive evidence for recent theories of the tempo-
ral dynamics of attention.

Our main findings indicated: (1) that the phase of occipital
low-frequency oscillations is tightly related to target discrim-
inability in regular streams of events, and (2) that delta phase is
locked to the best phase for processing in rhythmic conditions in
anticipation of relevant events. This strongly suggests that the
entrainment of oscillatory activity to the regular structure of tar-
gets can influence sensory information processing. Specifically,
we show that delta-phase entrainment is closely related to an
increase in contrast gain for attended events. Contrast enhance-
ment is a key principle in perceptual and attentional processes,
and it has been postulated as an important mechanism by which
attention can modulate perception (Liu et al., 2009; Carrasco,
2011). Importantly, this contrast enhancement was accompanied
by a change in accumulation rate and a decrease in response
times. The combination of an increased contrast gain with
shorter response times strongly suggests that delta phase is mod-
ulating the quality of sensory information.

These results are in agreement with the recent proposal made
by Schroeder and colleagues that the entrainment of attention to
environmental rhythms is instrumental for perceptual selection
(Lakatos et al., 2008, 2009; Schroeder and Lakatos, 2009). Fur-
thermore, it adds to the increasing electrophysiological studies
that have shown modulation of activity in sensory areas by tem-
poral expectation (Ghose and Maunsell, 2002; Praamstra et al.,
2006; Anderson and Sheinberg, 2008; Ghose and Bearl, 2010;
Jaramillo and Zador, 2011; Lima et al., 2011; Ng et al., 2012).
However, as previously mentioned, most of these studies have
used tasks and stimuli that are not optimal for looking at mech-
anisms of perceptual enhancement at the behavioral level. Here,
on the other hand, we show that this phase entrainment is directly
correlated with perceptual contrast gain measured during a con-
current psychophysical task. It is worth mentioning that a differ-
ence in steady-state responses across conditions could also
theoretically explain our findings. However, we believe that this
alternative explanation is unlikely because we found a difference
in the phase distributions of delta oscillations which was not
accompanied by a difference in delta power.

Further support for the effects of temporal regularities on
perceptual processing comes from the analysis of the broadband
EEG signals. Previous studies have shown modulation of visual
potentials by temporal attention (Griffin et al., 2002; Doherty et
al., 2005; Correa et al., 2006; Rohenkohl and Nobre, 2011); how-
ever, they did not isolate the visual activity that tracks contrast
sensitivity. By using a trial-by-trial GLM approach (Wyart et al.,
2012b), we were able to measure the modulation of the visual
activity most strongly sensitive to changes in contrast and thereby
show compelling complementary neural evidence to the modu-
lation of contrast gain by temporal expectation. The modulation
we observed most resembled the visual N2 potential, given its
distribution across time and sensors. In support of this interpre-
tation, several studies have shown that the N2 is one of the earliest
potentials related to target discriminability (Sergent et al., 2005;
Busch et al., 2009; Wyart et al., 2011). Possibly, the stronger mod-
ulation of this potential in regular conditions can lead to a higher
perceptual discriminability.

In a previous study, we found that different hazard rates pre-
dicting the time of motor responses also modulated low-
frequency oscillations (in the theta range), in this case over
central sites (Cravo et al., 2011). Similarly, central midline delta
phase has also been related to reaction times in cued temporal

Figure 4. EEG broadband signal is correlated to target strength. A, Event-related potentials
evoked by targets of low, medium, and high contrast. B, Average estimates of �1 for occipital
sites across experimental conditions. Gray shaded area represents time period used to compare
experimental conditions. C, Relationship between EEG broadband signal and stimulus intensity
for Regular and Irregular conditions. Lines represent the best fitting model (see main text for
equations). Topographies show distribution of the effect across sensors. Error bars indicate SEM
in both panels.
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attention tasks using auditory stimuli (Stefanics et al., 2010).
These findings, in conjunction with the present results, suggest
not only that temporal expectations can affect different behav-
ioral outputs, but, more importantly, that oscillations can carry
modulations by temporal expectations generated by different
methods, such as hazard rates (Cravo et al., 2011), symbolic cues
(Stefanics et al., 2010), and rhythmic tasks (Lakatos et al., 2008;
Gomez-Ramirez et al., 2011). In all cases, alignment of brain
oscillations ensures that information reaches task-relevant areas
in periods of optimal excitability. Unsurprisingly, the sites where
temporal expectations modulate low-frequency oscillations, and
consequently the behavioral correspondence, are highly depen-
dent on the task demands. Thus, although the role of oscillations
in regulating neural excitability may be pervasive and operate in
different levels of information processing, the exact stage that will
be modulated by temporal expectation seems to be depend on
task goals and the availability of neuronal groups whose excitabil-
ity can be timed to relevant moments (Schroeder and Lakatos,
2009; Nobre et al., 2012).

Given the evidence that temporal expectations may modulate
different brain areas through similar mechanisms, an important
next step is to understand whether there are sources of temporal
expectations beyond the entrainment of task-relevant areas. For
example, left intraparietal sulcus has been implicated in the con-
trol of temporal attention for different types of task demands
regardless of motor output (Cotti et al., 2011; Davranche et al.,
2011; Marchant and Driver, 2012). However, it is difficult to
tell whether this activation precedes, and controls, modula-
tion of sensory or motor areas leading to performance bene-
fits, or whether it is a downstream consequence of activity in
perceptual or motor areas becoming structured according to
temporal regularities in the stimulus stream.

In conclusion, our results suggest that the role of oscilla-
tions in regulating neural excitability is pervasive and operates
in different levels of information and brain areas and that the
entrainment of low-frequency oscillations to external events is
an important mechanism for the enhancement of perceptual
processing.
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