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ABSTRACT. We investigate iterated Tikhonov methods coupled with a Kacz-
marz strategy for obtaining stable solutions of nonlinear systems of ill-posed
operator equations. We show that the proposed method is a convergent reg-
ularization method. In the case of noisy data we propose a modification, the
so called loping iterated Tikhonov-Kaczmarz method, where a sequence of
relaxation parameters is introduced and a different stopping rule is used. Con-
vergence analysis for this method is also provided.

1. Introduction. In this paper we propose a new method for obtaining regularized
approximations of systems of nonlinear ill-posed operator equations.

The inverse problem we are interested in consists of determining an unknown
physical quantity x € X from the set of data (yo,...,yn_1) € YV, where X, Y are
Hilbert spaces and N > 1. In practical situations, we do not know the data exactly.
Instead, we have only approximate measured data yf € Y satisfying

with é; > 0 (noise level). We use the notation 6 := (dg,...,0n—1). The finite set
of data above is obtained by indirect measurements of the parameter, this process
being described by the model

where F; : D; C X — Y, and D; are the corresponding domains of definition.
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Standard methods for the solution of system (2) are based in the use of Iterative
type regularization methods [1, 10, 20]) or Tikhonov type regularization methods
[10, 25, 29] after rewriting (2) as a single equation F(z) = y, where

1
(3) F:=(Fy,...,Fx_1): ﬂizo D; YN
and y := (3°,...,y™V~1). However these methods become inefficient if N is large or
the evaluations of F;(x) and F}(z)* are expensive. In such a situation, Kaczmarz
type methods [18, 24, 26] which cyclically consider each equation in (2) separately
are much faster [26] and are often the method of choice in practice.

For recent analysis of Kaczmarz type methods for systems of ill-posed equations,
we refer the reader to [3, 13, 9, 12]. The starting point of our approach is the
iterated Tikhonov method [15, 5, 23] for solving linear ill-posed problems. This
regularization method is defined by

#h1 € argmin {||[Fz —¢|* + allz — 23|},
what corresponds to the iteration
332-4-1 = xi - Ole*(inH - ya)'

Motivated by the ideas in [3, 12], we propose in this article an iterated Tikhonov-
Kaczmarz method (1TK method) for solving (2). This iterative method is defined
by

(4) hyr € argmin {[|Fy (@) — gy I* + ollz — 237}

Here o > 0 is an appropriate chosen number (see (9) below), [k] := (k mod N) €
{0,...,N —1}, and ch = x9 € X is an initial guess, possibly incorporating some «a
priori knowledge about the exact solution.

Remark 1. Notice that from the iteration formula in (4) we conclude that

(5) T = @) — a”lFyy (20 1)* (Flag (29.41) — y?k]) :

As usual for nonlinear Tikhonov type regularization, the global minimum for the
Tikhonov functionals in (4) need not be unique. For exact data we obtain the same
convergence statements for any possible sequence of iterates (see Section 3) and we
will accept any global solution. For noisy data, a (strong) semi-convergence result
is obtained under a smooth assumption on the functionals F; (see assumption (A4)
in Section 4), which guarantees uniqueness of global minimizers in (4).

Remark 2. It is worth noticing that some authors consider iterated Tikhonov
regularization with the number of iterations n € N being fixed [11, 21, 27]. In this
case, « plays the role of the regularization parameter. This regularization method
is also called n-th iterated Tikhonov method.

The I'TK method consists in incorporating the Kaczmarz strategy in the iterated
Tikhonov method. This strategy is analog to the one introduced in [12] regarding
the Landweber-Kaczmarz (LK) iteration, in [9] regarding the Steepest-Descent-
Kaczmarz (SDK) iteration, in [13] regarding the Expectation-Maximization-
Kaczmarz (EMK) iteration. As usual in Kaczmarz type algorithms, a group of
N subsequent steps (starting at some multiple k£ of N) shall be called a cycle. The
iteration should be terminated when, for the first time, at least one of the residuals
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(| Fipg (241) — yfsk]H drops below a specified threshold within a cycle. That is, we
stop the iteration at

(6) k2 := min{IN € N: |Fi(afysi1) — v0| < 70;, for some 0 <i < N —1},

where 7 > 1 still has to be chosen (see (9) below). Notice that for k¥ = k2 we do not
necessarily have ||Fi(a:i5+i) —y?|| < 76; foralli = 0,..., N — 1. In the case of noise

free data, §; = 0 in (1), the stop criteria in (6) may never be reached, i.e. k% = oo
for §; = 0.

In the case of noisy data, we also propose a loping version of 1TK, namely, the
L-1TK iteration. In the L-ITK iteration we omit an update of the ITK iteration
(within one cycle) if the corresponding i-th residual is below some threshold. Conse-
quently, the L-1ITK method is not stopped until all residuals are below the specified
threshold. We provide a complete convergence analysis for both ITK and L-1ITK
iterations. In particular we prove that L-1TK is a convergent regularization method
in the sense of [10].

The article is outlined as follows. In Section 2 we formulate basic assumptions and
derive some auxiliary estimates required for the analysis. In Section 3 a convergence
result for the ITK method is proved. In Section 4 a semi-convergence result for the
ITK method for noisy data is proved. In Section 5 we introduce (for the case of
noisy data) a loping version of the ITK method and prove a semi-convergence result
for this new method. In Section 6 we discuss some possible applications related to
parameter identification in elliptic PDE’s. Section 7 is devoted to final remarks an
conclusions.

2. Assumptions and preliminary results. We begin this section by introducing
some assumptions, that are necessary for the convergence analysis presented in the
next section. These assumptions derive from the classical assumptions used in the
analysis of iterative regularization methods [10, 20, 27].

(A1) The operators F; are weakly sequentially continuous and Fréchet differen-
tiable; the corresponding domains of definition D; are weakly closed. Moreover, we
assume the existence of zg € X, M > 0, and p > 0 such that

N—-1
™) IF{@)] < M, x€Bywo)c()_, Di

Notice that x$ = x¢ is used as starting value of the ITK iteration.

(A2) This is an uniform assumption on the nonlinearity of the operators F;. We
assume that the local tangential cone condition [10, 20]

®) | Fi(z) - Fi(z) - F(2)(@ — D)y < nllFi(z) = B@)lly, 2,2 € By(xo)
holds for some n < 1.

(A3) There exists and element x* € B,/4(x0) such that F(z*) = y, where y =
(Yo, -..,yn—1) are the exact data satisfying (1).

We are now in position to choose the positive constants o and 7 in (5), (6). For
the rest of this article we shall assume
1 2 1
76 ((5maz) ’ s ﬂ >1,
3 p 1—n
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where 0,4, = max;{d;}. In particular, for linear problems we can choose 7 = 1.
Moreover, for exact data (i.e., §; =0, for j =0,..., N —1) we require simply a > 0.

In the sequel we verify some basic results that are necessary for the convergence
analysis derived in the next section. The first result concerns the well-definiteness
of the Tikhonov functionals

(10) Je(x) = |[Fpg(2) = yfllI* + allz — 23|,
which obviously relate to iteration (5) due to the fact that #{,, € argmin Ji(z).

Lemma 2.1. Let assumption (A1) be satisfied. Then each Tikhonov functional Jy
n (10) attains a minimizer on X.

Proof. See [10, Chapter 10]. O

The assertion of Lemma 2.1 still holds true if, instead of (A1), we assume that
the operator Fjy) is continuous and weakly closed, and that D(Fj)) is weakly closed
[10]. In the next lemma we prove an estimate for the residual of the ITK iteration.

Lemma 2.2. Let 20 and o be defined by (5) and (9) respectively. Then
(11) 1F (231) = wigl* < IFw () —vigll®, K<k
Proof. The inequality in (11) is a direct consequence of
1 Fey (2941) — fk]”Q < Je(@g) < k(@) < | Fg(a) - yfsk]”Qa k<kl.

O

The following lemma is an important auxiliary result, which will be used to prove
a monotony property of the ITK iteration.

Lemma 2.3. Let 2 and a be defined by (5) and (9) respectively. Moreover, assume
that (A1) - (A3) hold true. If 2, € B,(xg) for some k € N, then
(12)

241 —2* [P ||zf —2*[|* < %HF[,C](xiH)—yfk]H [(77_1)||F[k]($i+1)_y€k]||+(1+77)6[k]} .
Proof. From (5) it follows that
2541 = 2|1 = llag — 2|
<2 <mi+1 -zt xi+1 - xi>
—2<d+y—ﬁ,Fm@iHr@%gwmﬂd+a»

- <y[k] F[k} (wiﬂ), F[/k} (xi+1)(xi+1 z*) £ F[ ](xkﬂ) + F[k]( )

\
w@\

+ Q\MQ

<= ((F@le) = vy Fon (@) = Fig(@*) = By (0.) (0 —2%)
2(Flay(241) — yfsk]7 Flig(z*) = Fg(z94,) yfsk]>> :
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Now, applying the Cauchy-Schwarz inequality and (8) with 2 = z* € B,,4(x0),
z =1, € B,(x), leads to

s )
1 — 2% = flag — 2"

2
<= 1P ) = ol (0l () = vy £

— 1B (@) = v+ v — vl
and (12) follows from this inequality together with (1). O

It is worth noticing that the proof of Lemma 2.3 requires an assumption on xz 1

namely that 2, € B,(z0). In the next lemma we make sure that this assumption
is satisfied.

Lemma 2.4. Let 2 and a be defined by (5) and (9) respectively. Moreover, assume
that (A1), (A3) hold true. If ) € B, 4(x*) for some k € N, then i, € By(w).

Proof. Tt follows from the definition of :Ei 41 that
allad sy — 2hll? < Ju(ziin) < (@) < llypg — v ll? + alp/4)*.

From this inequality and (9) we obtain ||z, — 23| < (V@)™ + p/4 < p/2.
Therefore, it follows that

§ § § §
[zh1 — 2ol < ll2hgq — 2kl + |2k — 2ol < p/2+p/2,
completing the proof. O
Our next goal is to prove a monotony property, known to be satisfied by other

iterative regularization methods, e.g., by the Landweber [10], the steepest descent
[28], the LK [22] method, the L-LK method [12], and the L-SDK method [9].

Proposition 1 (Monotonicity). Under the assumptions of Lemma 2.3, for all k <

kS the iterates x{ remain in B,4(z*) C B,(wo) and satisfy (12). Moreover,

(13) ey — 2| < Jlag —2*|?, k<Kl

Proof. From (A3) it follows that zo € B,/4(z*). Moreover, Lemma 2.4 guarantees
that z1 € B,(z*). Therefore, it follows from Lemma 2.3 that (12) holds for k£ = 0.
Then we conclude from (12) and (6) that

* * 2
o7 = 2" |[* = llzg — 2"|* < Z[[Fo(29) = g5 lldo | 7(n = 1) + (1 +n) -

Thus, it follows from (9) that (13) holds for £ = 0. In particular we have x; €
B, /4(x*). The proof follows now using an inductive argument. O

In the next two sections we provide a complete convergence analysis for the ITK
iteration (see Theorems 3.2 and 4.2 below).

3. iTK Method: Convergence for exact data. Throughout this section, we
assume that (A1) - (A3) hold true and that z{, o and 7 are defined by (5) and
(9). Our main goal in this section is to prove convergence of the ITK iteration for
9;=0,9=0,...,N — 1. For exact data y = (yo,...,yn—1), the iterates in (5) are
denoted by zj, to contrast with xz in the noisy data case.
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Lemma 3.1. There exists an xo-minimal norm solution of (2) in B, 4(w0), i-e., a
solution z' of (2) such that ||zt —xo|| = inf{||z — x| : © € B, 4(x0) and F(z) = y}.
Moreover, ' is the only solution of (2) in B,/4(zo) N (xg + ker(F'(z1))*4).

Proof. Lemma 3.1 is a consequence of [16, Proposition 2.1]. For a detailed proof we
refer the reader to [20]. O

Throughout the rest of this article, 27 denotes the zo-minimal norm solution of
(2). We define e, := ' — ;. From Proposition 1 it follows that ||ey| is monotone
non increasing.

Notice that Proposition 1 guarantees that (12) holds for all k¥ € N. Since the
data is exact, (12) can be rewritten as ||zp1 — 2% — ||zx — 2%||* < 227 (n —
)| Figj (@k+1) — ypgy[|?. By summing over all k, this leads to

(14) kZ_:OHF[k](xk-&-l)_y[k]H < satgllwe —2f? < oo,

Equation (14) and the monotony of ||ex| are the main arguments in the following
proof of the convergence of the I'TK iteration.

Theorem 3.2 (Convergence for exact data). For exact data, the iteration (xy)
converges to a solution of (2), as k — oo. Moreover, if

(15) N(F'(z") CN(F(x)) for allz € By(wo), i =0,...,N -1,
then z, — .

Proof. We have already observed that |leg| decreases monotonically. Therefore,
|lex|| converges to some € > 0. In the following we show that ey is in fact a Cauchy
sequence. This is done similarly as in the proof of [9, Theorem 3.3]. The crucial
difference is the fact that the term (e, — ey, e,)| is here estimated by

l(en — e, en)| < ; a T Fs (@i1) = i, [HIF], (i) (@1 — i) |
+ Z o MFiy (1) = yi | IF] (ig1) (@1 — ziea) ]
(16) + Z a Fiy (@iv1) = i [HIFG (i) (@ie 1 — 20)]) -
Then, it follows from (8) that

A7) F, (i) (@t = 2in)|
|

(I)IFS, (wit1)(wipr — Tieta)

(L +IFs, (1) — yi |l
(L4 n0) (IIFs, (ziy1) — ya, Il + lya, — Fi (@ 40)])-

Moreover, from the definition of the iterated Tikhonov method and (7) it follows
that

<
<

(19) |IF}, (zig1)(@ie g1 — 20)|| < o™ ' M3 Z |Fj(#nonrj1) — yill < a7 M3y,

=
with v = y(ng) 1= Y 00" | Fj(@nen-+j+1) — ;|- Substituting (17), (18), (19) in (16)
leads to
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[(en — €k, en)]

no N-1
< Y X aMFi (@igNtii+1) — Vi (2(1 +MFsy (TigN+iy+1) = Yio |l
io=ko 11=0
2

Fa 4+ )

(we used the fact that ||y;, — Fi, (zi«41)|| < 7v) and we finally obtain the estimate

no N-—1 n—1
[(en —er,en)] < ¢ > Fs (@ion+in+1) — v ll? = ¢ 3 IFp (@) -y l?
io=ko 11=0 i=ko
with ¢ := (N +2)a= (1 +7n) + NM?a~ .
The remaining of the argumentation (including the proof of the second assertion)
follows the lines of the proof of [9, Theorem 3.3]. O

4. iTK Method: Convergence for noisy data. Throughout this section, we
assume that (A1) - (A3) hold true and that z¢, a and 7 are defined by (5), and (9).
Our main goal in this section is to prove that xig converges to a solution of (2) as

§ — 0, where k¢ is defined in (6). Our first goal is to verify the finiteness of the
stopping index k.

Proposition 2. Assume Sy := min{dy,...on_1} > 0. Then k¢ defined in (6) is
finite.

Proof. Assume by contradiction that for every [ € N, there exists no i(l) € {0,...,
N — 1} such that |‘Fi(l)('r?N+i(l)+1) - y?(l)H < 76;(1). From Proposition 1 it follows
that (12) can be applied recursively for k = 1,...,IN, and we obtain

IN=1 9
—[lzo—a*? < kZ_:I EHF[IC](xz-H)_y?k]H [(n_l)HF[k](xi-&-l)_yfk]||+(1+77)5[k]} ,leN.

Using the fact that || Fi (2, ) — yfk} | > 79[k, we obtain the estimate

|2 =t 2 s §
oo —a*? = % =B () = vl [r(1 —m) = (1 + )]
k=1 &
2752 .
(20) > [7(1_77)_(1%)}%@1\1_1), leN.

Due to (9), the right hand side of (20) tends to +oco as I — oo, which gives a
contradiction. Consequently, the minimum in (6) takes a finite value. O
For the rest of this section we assume, additionally to (A1) — (A3), that

(A4) The operators F; in (2) and it’s derivatives F; are Lipschitz continuous, i.e.,
there exists a constant L such that

IFi(x) = Fi(@)l| + ||Fi () = Fj (@) < Lz —z|, forall z,2 € By(o)-
Moreover, the constants o in (9) and M in (7) are such that (M +M)L < «, where
M = M(p7 xo,Y, A) = Sup{”Fl(x)fyf” D= Oa ey N-1 , T E Bp(‘rO) 9 ”yffyZH §
d;, 0] < A}

The next result concerns the continuity of z¢ at § = 0 for fixed k € N.
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Lemma 4.1. Let §; = (§j0,...,0;n-1) € (0,00) be given with lim;_,, §; = 0.
Moreover, let y% = (ygj, e Un_q) € YN be a corresponding sequence of noisy data
satisfying

g2 —yil <64, i=0,...N—1, jeN.
Then, for each k € N we have lim;_, o xZ{H = Tpy1-

Proof. Notice that the uniqueness of global minimizers of Ji in (10) hold true.
Indeed, let § € (0,00)" and y° € YV be given as in (1). If 21, x5 € B,(x) are
minimizers of .Ji, we have

21 = zol* = @~ M {(Fy(@2) " (Fiag (w2) — y{y) — Flig (@) (Fig (1) = ), 21 — 2)
o [(Fpa(@2) = vy, (Fly(w2) = Fiy(1)) (a1 — 22))

+ ((Flg) (22) = Figy(z1)), Fiy(z1)(z1 — 22))
< (M + M)La™ Yzy — 22|?,

and from (A4) it follows that z1 = z5. An immediate consequence of this uniqueness
is the fact that the iterative steps 2, in (5) are uniquely defined (see (10)).

The proof of Lemma 4.1 uses an inductive argument in k. First we consider the
case k = 0. Notice that xgj =z for j € N and we can estimate

oy — a1
= o (Fy(a1)" (Fo(a1) = yo) = Fy(ay')" (Fo(ay’) = yy'), 2t — )
=a! {(Fo(l"l) — 4o, (Fj(z1) — Fy(ay))(z) — 1))
+ (Fo(x1) — Fo(a), Fya?) (@ — 1))+ (= yo, Fiad)(ad — $1)>}
(21) < (M + M)La H|2¥ — 21| + Ma~ 160l — 24]].
Therefore, it follows from (A4) that lim;_,o xfj = z;. Next, let & > 0 and assume

that for all & < k we have lim; , )7, = 2 y1. Arguing as in (21) we obtain the
estimate

o — i
< (M + M)La oy — ol + (Mo~ 850 + o) = 2l )2y, =zl
From (A4) it follows that
(22) o~ (0 +M)Za oy, — el < Ma™ 80 + ||y — ]
and from the induction hypothesis we conclude that lim;_, xi{H = Tyt O

Theorem 4.2 (Convergence for noisy data). Let d; = (6j,0,..., 0;,n—1) be a given
sequence in (0,00)N with lim;_,o, 6; = 0, and let y% = (ygj7 . ,yf\}_l) ceYVN bea
corresponding sequence of noisy data satisfying ||yfj -yl <9;4,1=0,...,N —1,
j € N. Denote by ki = k*(éj,y51) the corresponding stopping index defined in
(6) and assume that the sequence {ki}jeN s unbounded. Then mig converges to a

solution of (2), as j — oo. Moreover, if (15) holds, then xzjj — af.
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Proof. The proof is analogous to the proof of [9, Theor. 3.6] and will be omitted.
In the proof, [9, Theor. 3.5] has to be replaced by Lemma 4.1 above. O

Remark 3. The assumption on the boundedness of the sequence {k‘i }ien in The-
orem 4.2 is crucial for the proof. This assumption is natural when dealing with
ill-posed problems and noisy data, since in practical applications one generally has
k% — 00 as § — 0. A similar assumption is also needed in [22] to prove convergence
of the Landweber-Kaczmarz iteration for noisy data.

In Section 5 we investigate the coupling of the ITK iteration with a loping strat-
egy, which allow us to drop the above assumption on the boundedness of {k]};en
and still prove a semiconvergence result analog to Theorem 4.2.

5. The loping iterated Tikhonov-Kaczmarz method. Motivated by the ideas
in [12, 9, 13, 3], we investigate in this section a loping iterated Tikhonov-Kaczmarz
method (L-ITK method) for solving (2). This iterative method is defined by

(23) T = ) — a_lka[lk] ($i+1)*(F[k] (@941) — Z‘Jfk])-
where
(24) o = L 118 (5 41) = 9l = 700

0 otherwise

The positive constants a and 7 are defined as in (9). The meaning of (23), (24) is
the following: at each iterative step an element x4 1/2 € Dy satisfying

Tepr2 = 23 — o Fy(@hg2) (Fiy (@es1/2) — vy

is computed. If ||Fyy(2py1/2) — yfk]H > 1o, we set xi_H = Tp41/2, otherwise

Ty | = a5,

%or exact data (6 = 0) the L-ITK reduces to the ITK iteration investigated in
the previous sections. For noisy data however, the L-ITK method is fundamentally
different from the ITK method: The bang-bang relaxation parameter wy effects
that the iterates defined in (5) become stationary if all components of the residual
vector || F;(z¢)—y?| fall below a pre-specified threshold. This characteristic renders
(5) a regularization method, as we shall see in Subsection 5.1.

Remark 4. As observed in Remark 1, the iteration in (23) corresponds to z§ 11 €
arg min {wg || Fig) (z) — yfsk]H2 + allz — 23|} and is not uniquely defined. For noisy
data, a semi-convergence result is obtained under the smooth assumption (A4) on
the functionals F;, which guarantees that the L-1TK iteration is uniquely defined.

The L-1TK iteration should be terminated when, for the first time, all xi are
equal within a cycle. That is, we stop the iteration at

(25) K = min{IN € N: afy = 2y = = 2{nin_1}
Notice that k° is the smallest multiple of N such that

§ § §
(26) xk£:$k2+1:"':wkf+N—l‘
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5.1. Convergence analysis. In what follows we assume that (Al) — (A3) and
(A4) hold true and that z¢, w, o and 7 are defined by (23), (24) and (9). We start
by listing some straightforward facts about the L-ITK iteration:

e Lemma 2.2 holds true. Lemma 2.3 still holds true, but (12) has to be replaced

by
gy — 2|2 = ||z — 2"
2wk
@7) <= Ry () = vl [ 1= DI () = vl + (L + 0]

e Lemma 2.4 and Proposition 1 hold true.

e Theorem 3.2 holds true (for exact data, the L-ITK iteration reduces to 1TK).
Before proving the main semiconvergence theorem we need two auxiliary results:
the first result guarantees that, for noisy data, the stopping index k9 in (25) is finite
(compare with Proposition 2); the second result is the analogous of Lemma 4.1 for
the L-1TK iteration.

Proposition 3. Assume Sy := min{dp,...on_1} > 0. Then k? in (25) is finite,
and

(28) IFi(2s) =4}l < w76i,  i=0,...,N—1.

where k = [(1+n) + M?/a]/(1 —n).

Proof. Assume by contradiction that for every [ € N, there exists () € {0,..., N —
1} such that TiN+i() 7 Tin- From Proposition 1 it follows that (27) can be applied
recursively for k =1,...,IN, and we obtain

= flzo — 2*|?

IN—1
<% 2% 1By (ehin) — oyl [0 - DIFad) vy + @+ o] LEN,

Using the fact that either wy = 0 or ||[Fjy(zg,,) — yfk}H > 76, we obtain the
estimate

IN—-1
(29) o —a'l? = X 2250 (o) — wfgllm [r(0—m) — (L]
Equation (29) and the fact that 2y x;) # zyn for all I € N, imply
5min
(B0)  lwo—aI? = [r(L—m) = @+ m)] 2R (6u), LN,

Due to (9), the right hand side of (30) tends to +oco as I — oo, which gives a
contradiction. Consequently, the set {{ € N: x;y4; = yn, 0 < i < N — 1} is not
empty and the minimum in (6) takes a finite value.

It remains to prove (28). For each fixed ¢ € {0,..., N — 1} we have
1Fiay) — 2]
<||Fi(ays) = Fi(alsiaye) + F (@ g1/0) (@1 /0 — 20l
Sl Tys i §41/2 i\ RS 41/2/\ RS 41/2 kS
+ HFi(l’igH/z) —yill+ 1l - F{(Iig-s-l/z)(xifﬂm - xig)”
SUHFz‘(Q«"ig) - Fi(xigﬂ/z) £yl + 76 + M||$i§+1/2 - xig |
<allEialy) — )+ (1 + ) Mo [y 1 ) (BuCal 1) — )
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(in the last inequality we used the fact that wys; = 0 and HFi(zifﬂ/z) -0 <

70;).1 Therefore, we obtain the estimate

(B31)  (A=n)lFgs) — gl < Q+n)ro+ M2a Y| Fi(2)s, ) — yil

and (28) follows. O
Lemma 5.1. Let §; = (§j0,...,0;,n-1) € (0,00) be given with lim;_,o d; = 0.
Moreover, let y% = (ygj7 . ,yf\ﬁ;l) € YN be a corresponding sequence of noisy data
satisfying

5; . .
Iy —yill <654, i=0,...,N—1, jeN.
Then, for each fized k € N we have lim;_, xiﬁ_l = Tk41-

Proof. Arguing as in the first part of the proof of Lemma 4.1, we conclude that the
iterative steps @, in (23) — (24) are uniquely defined.

The proof of Lemma 5.1 uses an inductive argument in k. First we take k = 0
(notice that xgj = 1z for j € N). We have to consider two cases: If wy = 1, we
argue as in (21) and obtain the estimate

(32) |29 — 1] < M[a— (M + M)L " 60.
Otherwise, if wp = 0, we have zfj = zo and HFo(xgj_l/Q) - ygj || < 7d,0. Therefore,
R
= a N {Fj(21)* (Fo(21) = yo + Fo(wo) £y’ ), 7’ = 1)

—1y .85 6; 9;
Mo @y — a4 {||Fo(331) — Fo(wo)[l + | Fo(wo) — v’ | + lvg’ — yoH}

IN

< (M + M)a~" o = x| { Lllws = a1l + 1Fo(wo) = 9’| + 850 } -
Arguing as in (31) we estimate || Fy(zo) — ygj || < k7d;,0. Therefore, it follows that
(33) |2y — 21l < alo— (M + ML~ (57 + 1)3,0.-

Thus, it follows from (32), (33) and (A4) that lim;_, xij = .

Now, take k£ > 0 and assume that for all £’ < k we have lim;_, xi{H = Th'y1-
Once again two cases must be considered: wg = 1 and wg = 0. Arguing as in the
case k = 0, we obtain estimates similar to (32) and (33). Thus, lim;_, xiﬁrl = Tji1
follows using the induction hypothesis (compare with (22) and the corresponding
step in the proof of Lemma 4.1). O

We are now ready to state and prove a semiconvergence result for the L-ITK
iteration.
Theorem 5.2. Let §; = (§;0,..., 6;n—1) be a given sequence in (0,00)N with
lim;_,o0 0; = 0, and let Y% = (ygj, e 7yf\'};1) € YN be a corresponding sequence of
noisy data satisfying ||ny —yill <4654, i=0,...,N—1, j € N. Denote by kI =
k.(8;,y%) the corresponding stopping index defined in (25). Then xiﬂ converges to

a solution =* of (2) as j — co. Moreover, if (15) holds, then xiﬁ converges to xt.

I'Notice that for distinct i € {0,..., N — 1} the points :cZ{;_H/Q may be different, since they are
minimizers of the Tikhonov functionals Jys () := || Fi(z) — Y2112 + allz — zza II12.
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12 ADRIANO DE CEZARO, JOHANN BAUMEISTER AND ANTONIO LEITAO

Proof. The proof is analogous to the proof of [9, Theorem 3.6] and is divided in two
cases. In the second case (the sequence kZ is not bounded) one has to argue with
Lemma 5.1. O

6. Applications. In this section we address parameter identification problems in
elliptic equations. In the focus is the question whether the local tangential cone
condition (8) is satisfied.

Part of the following analysis is based on the verification of a stronger condi-
tion, which implies the local tangential cone condition, namely the (adjoint) range
invariance condition:’

There exists a family of bounded linear operators R, : Y — Y and a
positive constant such that

(34) F'(z) = R F'(z") and ||R, —id|| > ¢|jz — 2| x, = € B,(2°).

It is a well known fact that the range invariance condition implies that
range(F’(z)) = range(F'(z1)), x € B,(z°).
The model problem under investigation is an elliptic boundary value problem

(35) — (aus)s + (bu)s +cu = f, in (0,1)
(36) —agus(0) + Bou(0) = go, —arus(1) + Bru(0) = g1.

Here f is a given function in L?(0,1) and a4, B;, g; are real numbers specified below.
To simplify the discussion we consider here the one-dimensional case only, but we
shall give some hints for two- and three-dimensional cases.

The equation in (35) may be considered as a simplified model for a steady state
convection-diffusion equation. The term cu is a production term where the function
¢ depends on properties of the material. The term —(aus)s + (bu)s results from an
ansatz for the flux j := —aus + bu. Here a,b are functions describing the diffusion
and convective part, respectively. For a concrete application see for instance [2],
Chapter 1.2.

We want to identify the parameters a, b, ¢ from a measurement u’ € Ly(0,1) of
the solution u € Ly(0,1) of the boundary value problem (35), (36). We distinguish
between three different inverse problems, namely the so called a/b/c—problems:

The a-problem: Find a under the assumptions b =0, ¢ = 0.
The b-problem: Find b under the assumptions a =1, ¢ = 1.
The c-problem: Find ¢ under the assumptions a = 1, b = 0.

Each problem may be presented by a nonlinear equation of the type F(z) = y for
an appropriately chosen parameter-to-output mapping F': D C X — Y.

The a- and c-problem are considered in a huge amount of references whereas the
b-problem received less attention. It seems that the tangential cone condition for
this problem has not been investigated up to now; we do that below. A detailed
analysis of regularization methods for the identification in elliptic and parabolic
equations can be found in [4].

2For a proof that the local tangential cone condition follows from the range invariance condition,
see [16].
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6.1. The c-problem. Let us start the discussion with the c-problem, the most
simple one. Here the mapping F' is defined as follows:

F:D>c—u(c) € Ly(0,1), DC X :=Y :=1L50,1),
where u(c) solves the boundary value problem
—uss +cu = f, in(0,1)
u(©) = go, ul) = @,

in the weak sense. The domain of definition is chosen as a ball in X := L3(0, 1) (see
[8]):
D := B,(c") where ¢ € Ly(0,1), " >0 a.e. in (0,1).

Then the mapping F is Fréchet-differentiable in D (see [10, 20]) and we have
F'(c)h =T(c)" (~hu(c)), F'(c)*w=—u(c)T(c) w, h,we Ly(0,1),

where I'(c) : H2(0,1) N HE(0,1) — Ly(0,1) is defined by I'(c)u := —ugs + cu. We
assume that c? is chosen such that u(c) > k a.e. for each ¢ € D, where & is a
positive constant. Then we have

(37) F'(¢) = R(¢,c)F'(¢), ¢,c € D,
with

R(E, c)*w = T (&) [u()u(c) "L A@E) " tw], w € L2(0,1), ||R(E,c) —id| < k1|é — ||, ¢, &€ D.
Here k7 is a positive constant. As a result, we see that the range invariance

condition is satisfied and the tangential cone condition follows.

Remark 5. The results above hold also in the two- and three-dimensional cases;
no further assumptions are necessary (see, e.g., [14, 19]). Clearly, the boundary
conditions have now to be considered in the sense of trace operators.

6.2. The b-problem. Here the parameter-to-output mapping F' is defined as fol-
lows:
F:D>bw u(b) € Ly(0,1), DC X :=H'0,1), Y :=Ly(0,1),
where u(b) solves the boundary value problem
—Uss + (bu)s‘ +u = f7 in (Oa 1)
—ug(0) + bu(0) = go, —us(l)+du(l) = ¢

in the weak sense. The boundary value problem above is uniquely solvable in
H(0,1) whenever ||b]|x is small enough, which can be seen from an application of
the Lax-Milgram-Lemma. Therefore we choose D as a ball B, := {z € X | |lz]|x <
p} in X with p small enough such that u(b) is uniquely determined for each b € B,,.
Additionally, the assumption that each parameter b belongs to H'(0, 1) ensures that
the solution u(b) is in H?(0,1).

Let b € B,. Then F is Fréchet-differentiable in b and F’(b)h = v, where v solves
(38) —vgs+ (w)s+v = —(hu)s in (0,1),
(39) —vs + bv’(l) = —hu’(l)
We want to verify an inequality which leads to the tangential cone condition. Let

u = u(b), @ = u(b) with b, b € B,(b°). Moreover let v := F'(b)(b — b). We define
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14 ADRIANO DE CEZARO, JOHANN BAUMEISTER AND ANTONIO LEITAO

the mapping Q(b) : Y — H'(0,1) where v := Q(b)w solves the boundary value
problem
_¢ss_b¢s+¢:win (071)7 ws(o):ws(l)zov
in a weak sense. Since b € H'(0,1) we see that ¢ is more regular, namely 1) €
H?(0,1).
Let w €Y, ||w|y <1, and let ¢ := Q(b)w. Then

(@—u—F'(b)(b—b),w)y
=(t —u — v, W)y
=(U —u— v, ~Pss — bhs + )y
=(— (i — u)es + [b(@ — u)]s + (@ — u), )y
+ (vgs — [b]s — v, )y + (b b)(@ — )],
={[(6 = ylss )y + ([ = b)ul, ¥)y + (b= )@ — w)e
=((b—b)(@ — u), )y -
This implies
1E(6) — F(b) — F'(b)(b— b)v
= sup [(@—u—F'(b)(@—u),w)y

lwlly <1
SHTQJ«FJMﬁ—WKQ@w%WI
SH(E —b)(a — “)||L2(0,1) sup ||(Q(b)w)s“L2(o,1)

llwlly <1

<||b - bl o0,y l|% — ullL2(0,1) sup  [|Q(b)w] (0,1
[lwlly <1

and we derive the estimate
(40) I (B) = F(b) = F'(b)(b = b)lly < r2llb = bl oI — ull 20,1
where the constant x5 depends on the norm of the mapping Q(b).
Remark 6. The formulation of the b-problem above can be easily generalized to
the two-dimensional case.® The convection term in this case is 91 (bu) + 92 (bu) and
again a scalar function b has to be identified. The situation is different when one
models the first order term in the equation by b;01u + baOou [17]. Then one has to
identify two parameters and the analysis is much more delicate. It seems that the
identification problems has not been considered in the framework chosen above; see
[7] for the investigation of identifiably for this inverse problem.
6.3. The a-problem. Here the parameter-to-solution mapping F' is defined by
F:D>aw u(a) € Ly(0,1), DC X :=Y := Ly(0,1),
where u(a) solves the boundary value problem
—(aus)s = f, in(0,1)
u(0) = go, u(l) = ¢

3Due to the Sobolev embedding theorem of H® in L, in the two-dimensional case the param-
eter space X has to be chosen a a subset of H1*¢, for some & > 0.
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in the weak sense. The domain of definition is chosen as
D:={ac H(0,1)] a(s) > a a.e.},

where a is a positive constant. One can prove [20] that F' is Fréchet differentiable
in D with

(41)

F'(a)h = A(a) " ((=hu(c)s)s), F'(c)*w = —J 'u(a)s(A(a) " 'w),], h,w € Ly(0,1),

where A(a) : H?(0,1) N H}(0,1) — Lo(0,1) is defined as A(a)u := —(aus)s and
J : H*(0,1) — L2(0,1) is defined by Ji := —tbss + ¢ (J is the adjoint of the
embedding of H'(0,1) into L(0,1)). In [20] it is shown that the tangential cone
condition is satisfied.

Remark 7. The results in this section strongly benefit from the fact that the
model is one-dimensional. One can see this for instance that, due to the choice
of the parameter space, each admissible parameter is a continuous function. In
the two- or three-dimensional case additional assumptions are necessary in order to
obtain the same results (see, e.g., [14]).

Remark 8. It seems that the range invariance condition cannot be proved (even
under stronger regularity assumptions) for the a- and the b-problem, respectively;
for the a-problem see [16]. Notice that the presentation of the Fréchet-derivative in
(41), (38) cannot be handled in the same way as in the case of the c-problem.

7. Conclusions. In this paper we propose a new iterative method for inverse prob-
lems of the form (2), namely the ITK iteration. In the case of noisy data, we also
propose a loping version of 1TK, namely, the L-ITK iteration.

In the particular case of dealing with a single operator equation (N =1 in (2)),
ITK and L-ITK are the same iteration and reduce to the classical iterated Tikhonov
method. To the best of our knowledge this method has so far been investigated only
for linear problems [5, 15, 23] and the convergence analysis for nonlinear operator
equations was still open.

Three good reasons for using the loping iteration. The first reason is a numerical
one:

Notice that, (11) allow us to conclude wy = 0 without having to compute 11,2 at
all. Therefore, after a large number of iterations, wy will vanish for some k within
each iteration cycle and the computational expensive evaluation of x4/, (solution
of a nonlinear equation) might be loped, making the L-ITK method in (23) a fast
alternative to the ITK method as well as to classical Kaczmarz type methods [22, 6].

The second reason is of analytical nature: _

An alternative to relax the assumption on the boundedness of the sequence {kf};en
in Theorem 4.2 and still prove a semiconvergence result, is the introduction of the
loping strategy above. This is done in Theorem 5.2.

The third reason is of heuristic nature:

The rules for choosing the stooping index k2 in (6) and in (25) are quite different.
According to (6) the ITK iteration should be stopped when for the first time one
of the equations of system 2 is satisfied within a specified threshold. Therefore, at
the iteration step xii, we cannot control all the residuals ||F;(29) — y?|| within the

cycle.
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16 ADRIANO DE CEZARO, JOHANN BAUMEISTER AND ANTONIO LEITAO

According to (25) however, the L-1TK iteration only stops when all the residuals
| Ei(z8) — v, 4 = 0,...,N — 1 drop below a specified threshold. Consequently,
although the L-1TK iteration needs more steps to reach discrepancy, it produces an
approximate solution xii which better fits all the system data.
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